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Abstract—(+)-(1S,2R) and (—)-(1R,2S)-2-aminocyclobutane-1-carboxylic acids have been prepared in >97% ee and in 33% and 20%
overall yields starting from a single, chiral, bicyclic compound perceived as a chiral uracil equivalent. Construction of the cyclo-
butane ring is achieved via a [2+2] photocycloaddition reaction of this chiral precursor with ethylene.

© 2004 Elsevier Ltd. All rights reserved.

The incorporation of conformationally constrained B-
amino acids into peptides can dramatically influence
their secondary and tertiary structures and biological
activities.! In consequence, interest for the synthesis
and study of alicyclic B-amino acids has rapidly in-
creased.” Most efforts are devoted to cyclohexane,?
cyclopentane* and cyclopropane® derivatives. Indeed,
oligopeptide chains containing trans-2-aminocyclohex-
anecarboxylic acid have been shown to adopt 14-helical
structures while those containing trans-2-aminocyclo-
pentanecarboxylic acid prefer 12-helices.>® cis-Cyclopro-
pane derivatives, too, give highly stable helical
conformations in peptides.’® Moreover, some alicyclic
B-amino acid derivatives display antifungal, antibiotic
or analgesic activities.>® Despite the clear potential of
cyclobutane B-amino acid building blocks in this con-
text, and some positive indications of their ability to im-
pose secondary structure from preliminary studies,”%?
there are currently very few means of access to these
compounds.

Only two enantioselective syntheses of cis-2-aminocyclo-
butane-1-carboxylic acid have been described so far: first
by Martin-Vila et al.® and then recently by Bolm et al.’
Both procedures are based on an enantioselective meso-
cyclobutane-1,2-dicarboxylic acid desymmetrization
strategy, involving enzymatic hydrolysis of a diester in
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the first case and alkaloid-mediated opening of the
anhydride in the second. Subsequent transformations
led to the (—)-(1R,2S) antipode in each case. We present
here an alternative strategy allowing rapid access to
both enantiomers using simple and easily accessible
materials.

We previously described the synthesis of racemic 2-
aminocyclobutane-1-carboxylic acid (£)-4.!° The strat-
egy was based on a photochemical reaction of ethylene
(1) with uracil (2) to give the cyclobutane adduct (¥)-
3, followed by controlled degradation of the heterocyclic
ring. The target amino acid (¥)-4 was obtained with an
overall yield of 52% (Scheme 1).

Our aim was to develop an enantioselective version of
this synthesis. To this end, we decided to introduce a
chiral auxiliary on the uracil ring in order to induce dia-
stereochemical discrimination of cyclobutane adducts.
There was also the possibility for diastereofacial selec-
tion during the photochemical [2+2] reaction,!'!
although results with ethylene as one of the reaction
components are highly variable.!> We selected to use
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the Nl1-substituted uracil mimic (R)-5. This bicyclic
compound was easily obtained in enantiomerically pure
form in two steps from commercial (R)-phenylglycinol,
essentially as described by Agami et al. for the S-
enantiomer.!?

Compound (R)-5 was submitted to [2+2] photocyclo-
addition reaction conditions (Scheme 2). Ethylene (1)
was bubbled through a solution of (R)-5 in acetone at
room temperature, which was irradiated with a 400 W
medium-pressure mercury lamp fitted with a Pyrex filter
during 2h. In the event, the desired cyclobutane adduct
was obtained as a mixture of two diastereoisomers. In
conformity with our previous study involving uracil 2
(Scheme 1),'° cyclobutane compounds (—)-6 and (—)-7
each had a cis configuration; a de of 14% was deter-
mined by integration of '"H NMR data obtained on
the crude material. Separation was easily achieved by
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column chromatography on silica gel, giving both (—)-
6 and (—)-7 in stereochemically pure form in 49% and
31% yield, respectively. Subsequent transformations
were carried out under identical conditions for each pure
compound.

Selective opening of the five-membered rings of (—)-6
and (—)-7 was achieved by catalytic hydrogenation in
the presence of palladium on charcoal, as described by
Agami et al. for related heterocyclic structures.'? Single
diastereoisomers (—)-8 and (—)-9 were thus obtained in
effectively quantitative yield.

Next, the a-methylbenzyl group was removed cleanly
and efficiently with refluxing formic acid.'* We thus ob-
tained enantiomers (+)-3 and (—)-3 whose spectroscopic
data were identical with those of our previous sample of
(£)-3.1° The two-step transformation of the heterocyclic
ring—involving mild base hydrolysis followed by diazo-
tization with lequiv of sodium nitrite in acidic med-
ium—followed by purification on ion exchange resin
proceeded in good yield without trace of epimerization
and led to the target B-amino acids (+)-4 and (—)-4 in
zwitterionic form (Scheme 2). NMR spectroscopic
data'® were comparable with those for racemic mate-
rial'® and with those reported by Bolm et al.® for (—)-4.

The overall yields following this short sequence were
33% and 20% for (+)-4 and (—)-4, respectively, from
(R)-5. Their respective optical rotations were +71 (¢
0.88, H,0O) and —70 (¢ 1.03, H,O). We determined an
enantiomeric excess of >97% for each enantiomer (+)-
4 and (—)-4 by HPLC on chiral column.!® Since the ee
of (R)-5 was 98%, as determined by "H NMR with the
chiral shift reagent Eu(hcf);, we can conclude that there
was no loss of stereochemical fidelity during the
synthesis.

The attribution of the 1R,2S absolute configuration
of the B-amino acid (—)-4 was made by correlation with
the previous observations made by Martin-Vila et al.®
and Bolm et al.” The absolute configuration of (+)-4 is
therefore 1S,2R.

In summary, we have succeeded in synthesizing both
(+)-(1S,2R) and (—)-(1R,2S)-2-aminocyclobutane-1-
carboxylic acid 4 in five steps from (R)-5. Previous
desymmetrization based stereoselective syntheses started
with derivatives of cis-cyclobutane-1,2-dicarboxylic
acid, which, although commercially available, is rather
expensive. Our synthesis represents a useful complemen-
tary strategy and provides the first described access to
the (+) antipode.!” Millimolar-range quantities of the
title B-amino acids are routinely accessible in this way
and their incorporation into peptides is currently under
study.
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